EyeKnowHow Signal Integrity Consulting

Signal Integrity optimization of a complex (memory) bus system

Agilent ADS User Group Meeting 15th May 2009

1) Introduction: What is the problem?

2) Channel Characterization: An Eye is Born

3) Channel Optimization: Conventional Method

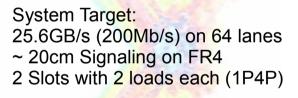
1000

- 4) Optimize pulse area
- 5) Optimize pulse shape

6) Outlook

7) Summary

1) Introduction What is the Problem ?

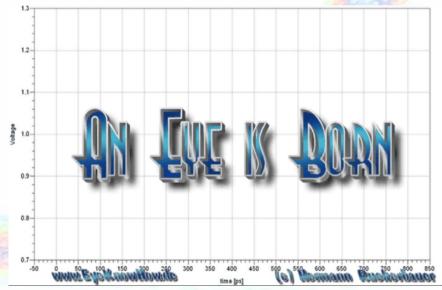


- Target: Optimization of a Signaling Channel
- Example: Multi Drop Memory Channel
- Problem: A huge matrix of variables might be varied:
 - Driver strength and linearity
 - Driver / Receiver Package parameter
 - Package Technology, Routing length/width/layer
 - Motherboard and DIMM routing
 - → Topology (Flyby vs. T), Routing length/width/layer
 - Receiver Termination matrix and value
 - Write vs. Read @ different Frequencies
- How to optimize such a System efficiantly ?

Controller

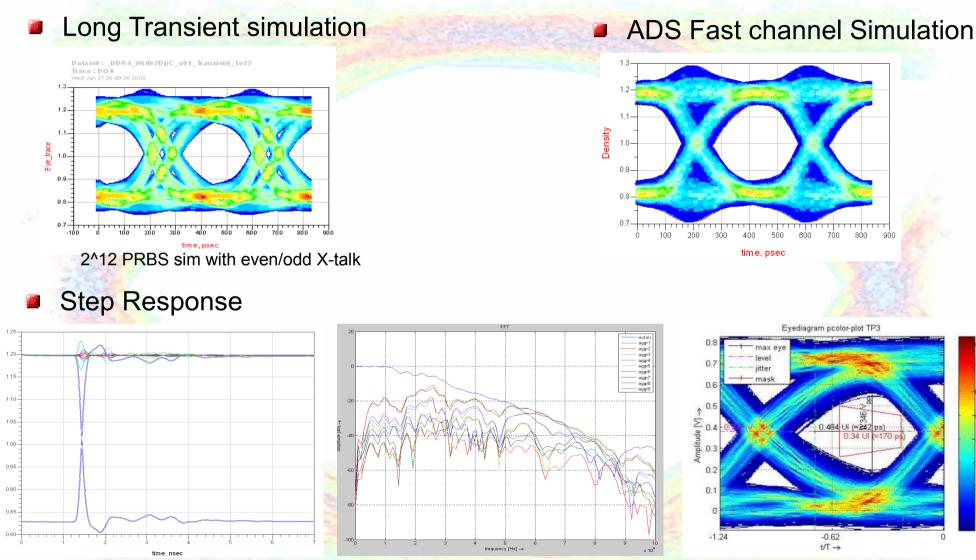
000000

DRAM data channel with 4Ranks (1P4)



DRAM

2) Channel Characterization PRBS simulation with X-talk


- Simulating a long PRBS Pattern
 - Pattern length for worst case ISI is dependent on Channel memory
 - > To get the worst case Eye requires combination with worst case X-talk
 - Do a VERY long Simulation with independent aggressors
 - Using even and odd Aggressor pattern only requires 2x PRBS length and results in nearly worst case Eye opening
- Calculate the Eye and evaluate:
 - Rise and Falltime
 - > Jitter / Histogram
 - Eye Width and Height
 - Setup and Hold

2) Channel Characterization Faster Alternatives

Eye Calculated from Step response

Rising and Falling Step response Victim and Aggressors

Frequency domain FFT on victim and aggressor

3) Channel Optimization Conventional Method

Knowing the characteristics of the Channel is one thing. But how to optimize it ?

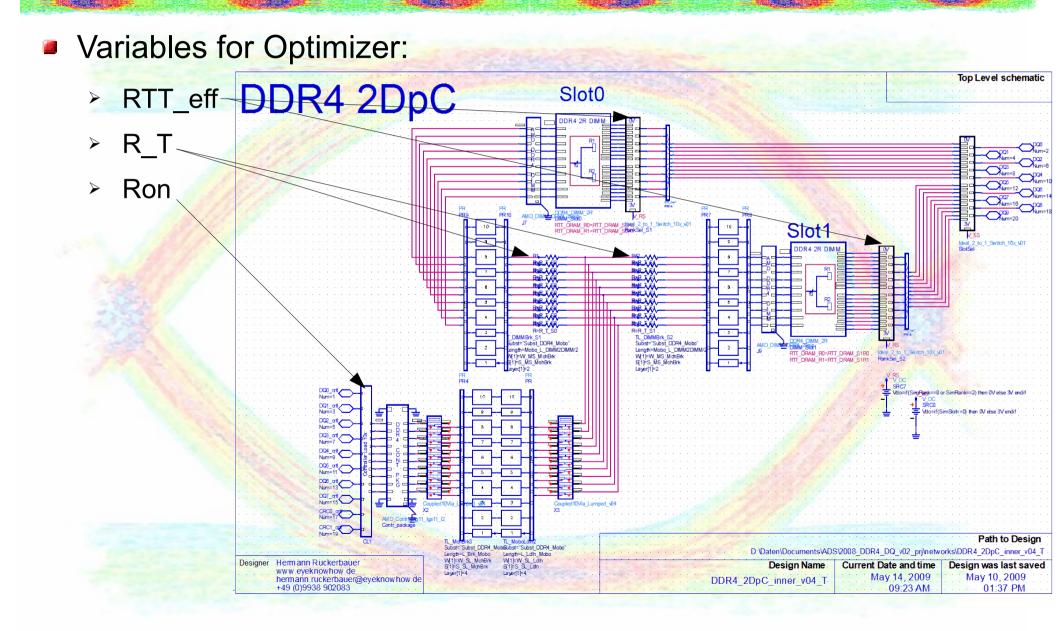
The number of variables generates a huge matrix of possible combinations.

E

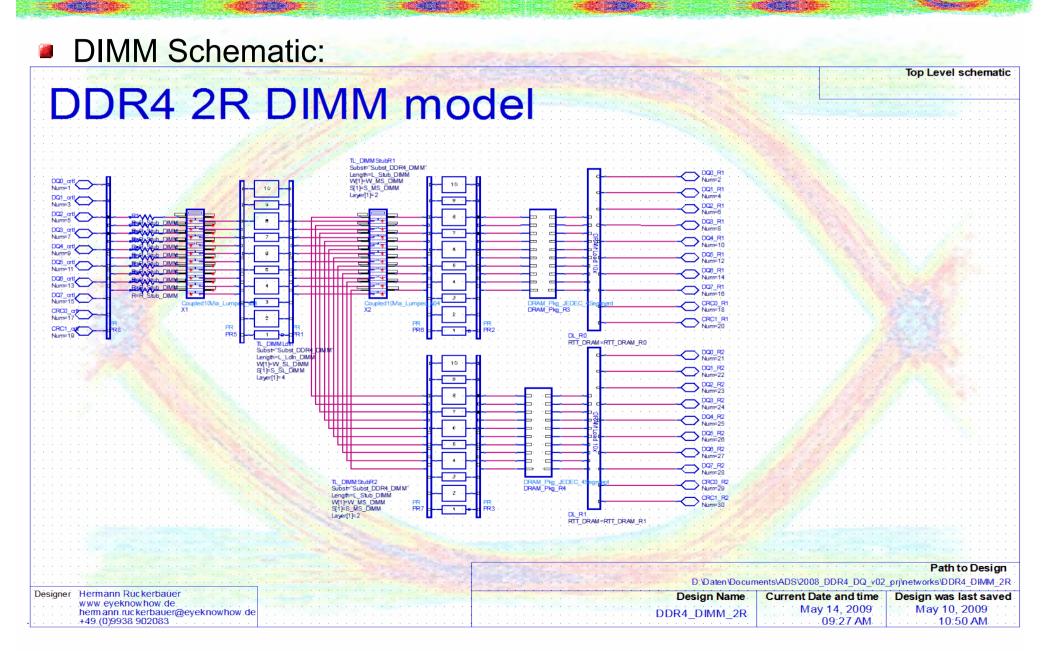
- One possible solution is to optimize each variable on it's own
 - Define a best guess combination of variables
 - Optimize Ron and set the new value as reference.
 - Optimize RTT and set the new value as reference.
 - ... and so on and on and on ...

This solution does takes a long time and will not find the global optimum as the variables are not independent!

3) Channel Optimization Single Pulse as Eye Quality indicator

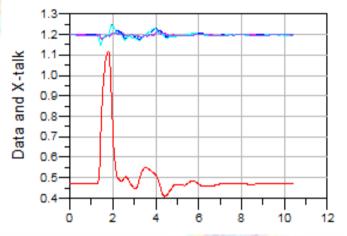


- How to utilize the ADS Optimizer for this task ?
- The Optimizer does needs direct feedback from the simulation, but usually Eye's are generated in the DataDisplay, or even in an external tool!
- BUT: Each function from the Data Display should work in the schematic too!
- Basically this would allow to use the Eye() function in the schematic. Disadvantage of this method:
 - Difficult to debug because of "blind" usage
 - Very long simulation times

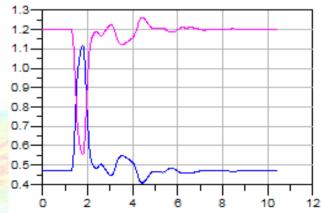

Need a different parameter for the optimizer !

Use Pulse Response as indicator for eye quality!

3) Channel Optimization Example Simulation Schematic



3) Channel Optimization Example Simulation Schematic



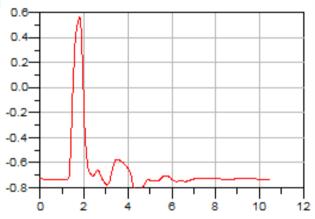
Optimize Pulse Area Simulation setup with a single Pulse

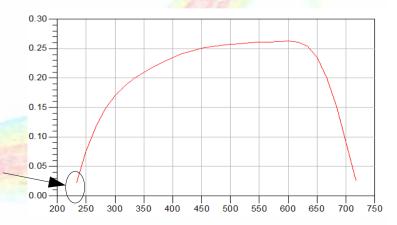
- Characterizing the channel by UI wide pulse Response
 - Fast and simple setup
 - Includes rising and falling edge
 - Can include X-talk with single simulation
 - In first order passive X-talk is "symmetric"
 - Stimulate victim and look at aggressors

- Ideally two separate simulations are used for rising and falling pulse
 - Only a calculated "0" pulse was used: Sig_Fall=VTT-SigRise+LowLevel
 - This is not correctly including rising and falling characteristics of the driver, what would be possible with 2 simulations

4) Optimize Pulse Area Separate "use" Signal Information

Generation of a single Pulse by "Sig_Rise-Sig_Fall"

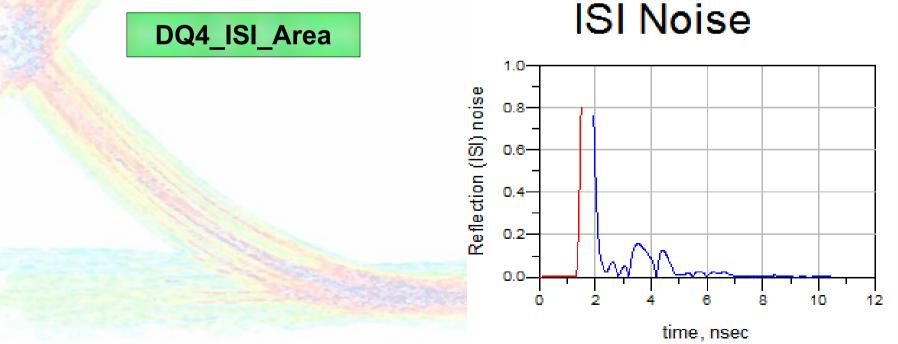

- Area under this pulse is used for area inside eye
- Integrate Result:


DQ4_Pulse_Area

- Alternative is to use max Voltage level or Voltage @ sampling point
- Use 0-Xing to separate the interesting data UI
 - Extract index of first and second X-ing

UI_start_index=min(find(DQ4_PulseEye > 0)) UI_end_index=max(find(DQ4_PulseEye > 0))

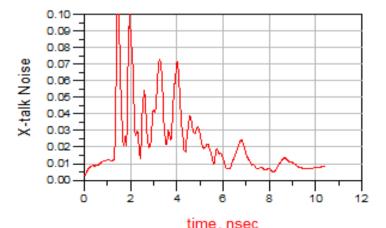
Implement a interpolation to get an exact
0 X-ing is a good idea for a stable function



4) Optimize Pulse Area Calculate ISI noise

Calculate ISI area

- Take Signal from start to first X-ing
- Take Signal trace from second X-ing to end
- Integrate results and sum up to get the area (energy) of the ISI noise:

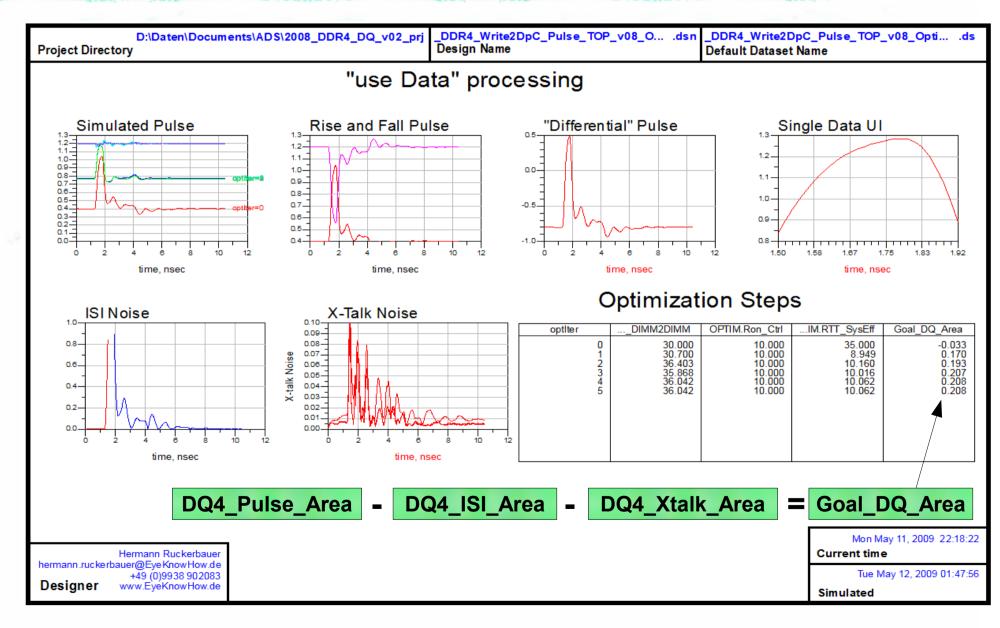

4) Optimize Pulse Area Calculate X-talk noise

Calculate X-talk area

- In this example X-talk and ISI have been optimizted in parallel, but it might be a good idea to separate them:
 - The dominent variables for the effects are independent
 - X-talk Area might happen at crossing and therefore does not subtract from the "use Data" engergy
- Sum of all: abs(VTT-Aggressor)
 - Can be done over the whole trace:
 - No need to separate data UI
- In this example X-talk happens at X-ing ==> the area can be scaled down
- Integrate the result:

DQ4_Xtalk_Area

X-Talk Noise



4) Optimize Pulse Area Data in the DDS

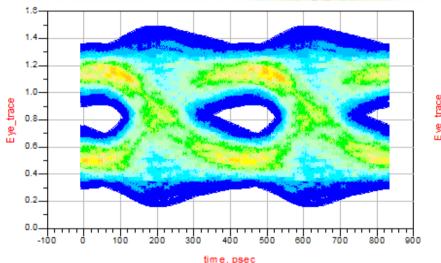
and the second

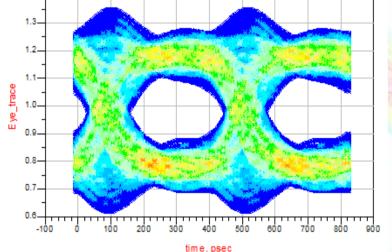
and the second

4) Optimize Pulse Area Signal area – Noise Area

Calculate Final Signal Area and run the optimizer on this

optIter	Goal_DQ_Area	OPTIM.R_DIMM2DIMM	OPTIM.R on_C trl	OPTIM.R TT_S ys E ff
0	-33.06 m	30.00	10.00	35.00
1	169.9 m	30.70	10.00	8.949
2	193.4 m	36.40	10.00	10.16
3	207.1 m	35.87	10.00	10.02
4	207.8 m	36.04	10.00	10.06
5	207.8 m	36.04	10.00	10.06


Complete equation set for pulse area optimization


	1	Entry of t																																								
-	T DX	Q4_AreaCalculation																																								
	· D	24_RiseCalculated=If (sweep_dim()	Optim_I	Sim 1	TRAN	DQ4	1-1) then	n DQ	4[0,:1]	eise	Optir	m_Sł	m, TR	AND	DQ4	endi							DQ4	Reflect	tion_E	End=at	s DQ4	Puls	eEye(J_end	Und	INCH	iant?	naD	Q4.F	hise	Eye))	004	Pul	MEyel	(OD -
	. D	Q4. RiseCalculated1=DQ4																						DQ4	Reflect	tion 1	Stat=a	bs/DQ	4 Puls	WEVE	C.UL	start	inde	N-D	04 F	usel	Erett	0.				
	D	04 RiseDimAdust+if (sweep dimE	004 R	iseCa	leula	ed) =	=21	then i	lerpa	ndD	04 R	liseC	alcul	and	0T1) e	dan (1004	RM	Cale	ulah	0.0	end	57 1	004	Reflect	Ama	-intecr	ate/DC	4 Ref	fectio	n Star	0+int	eora	MOD!	04 F	lef lef	tion	End)				
	1 D	04 FailCalculated=VDDO-DO4 Ris	eCak u	Interd	+004	Re	eCal	culat	o ba											-				004	Areast	1004	Pulse	rea-D	14 Re	finctA	183		-			-						
	· 0	04 PulmiEvenDO4 RiseCal/utated	004	FallC	abuti	ned.																		000	XTABA	redenii	ne-draf	Water	000-0	0000	1 A											
	· 0	index-find/DO4_PutreEce < D:																						001	XtalkA	re an i	ntecrat	el abel	001-0	010												
		stat. indexeminified DO4. PutseE																						002	XtalkA	-	dans d	al abel	002.0	0200												
	1	and index-marifed POA Dates																						001	Y halfs &		-	a	001.0													
	1 2	A LE-DOA DatesEvall& start ind																						000	Vanit-A		and the second	and as here of	DOLE P	versioni Versioni												
	- X	of on our puset and said up	ic yo	and h	ripert																			200	Assessed		ine gra	er aces		2010]	B											
		_star_sme=mn(ndep(DQ4_UI))																						0000	Ataska	rearry	negra	er acis	000-0	rolol	Ŀ .											
		_end_time=max(indep(DQ4_UI))																						007	X130KA	reari	ntegrat	ecabs:	007-0	070	0											
	. 0	24_PulseWidth_index=UI_end_inde	8-UL-8	_																				DOB,	X180A	ream	ntegrat	e(abs)	DOB-C	Q6(0)	r .											
	· D	24_PulseWidth_time=U_end_time-	U_sta	1,50	× •																			DQ9	XtalkA	reani	nbegrat	e(abs)	009-0	09[0]	h .											
	. D	Q4_PulseHeight=max(DQ4_PulseE)	(8)																					DQa	LXtalk/	Area:	000)	(talkAr	ea+D(21_X1	sikAre.	a+DC	2.X	tak/	12631	003	Xtal	Area	+DQ5	1.00	(RArer	a+DC
	. 00	Q4_PulseArea=(integrate(DQ4_UI))																						DQ4	FinalAr	rea=0	DQ4_P	UISEA	ya-DC	14.Re	NectAn	ea-D	Call,	Xtal	kAre	A)*54	R					

4) Optimize Pulse Area Optimization Results and Data eyes

Data Eye before Optimization

Data Eye after Optimization

Measurement Resul	lts
Eye Level Zero	0.77866992863014
Eye Level One	1.1816964383729
Eye Level Mean	0.98018318350153
Eye Amplitude	0.40302650974278
Eye Height	0.21600396411977
Eye Height (db)	-6.655382785734
Eye Width	2.9194383e-010
Eye Opening Fa	0.83984541245133
Eye Signal_to_N	6.243967252553
Eye Duty Cycle	2.33075e-012
Eye Duty Cycle	0.55937954325496
Eye Rise Time	1.2126543e-010
Eye Fall Time	1.2194645e-010
Eye Jitter (PP)	4.9334812e-010
Eye Jitter (RMS)	2.0050531e-010

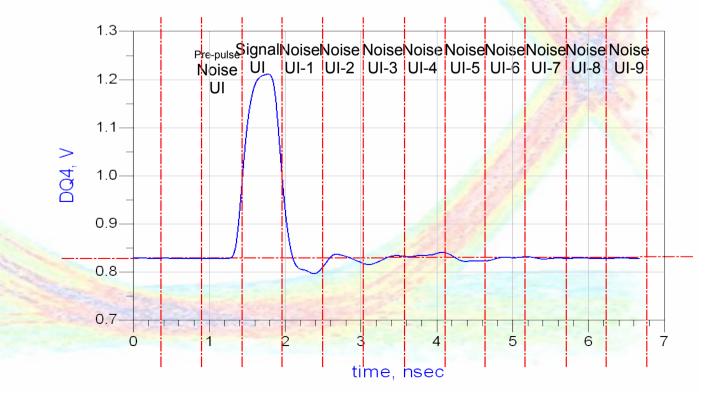
4) Optimize Pulse Area Advantages / Drawbacks

- Advantages of the Area calculation method
 - "Easy" to implement and use
 - No AEL programming is necessary
- Drawbacks of the Area calculation method
 - Area is not all: Sometimes it is helpful to trade timing vs. voltage margin
 - X-talk Area might be not reducing the "use" data energy dependent on the phase relation of the X-talk (e. g. Source Sync signals)
 - Eye is reduced to a single number
 - Debugging is difficult:
 - Variable Dimensions are different during optimization, in the the DDS and in a transient simulation
 - Need to create separate equations or an automatic dimension check and dimension adjustment (what is simpler in AEL)

5) Optimize Pulse Shape Alternative Solution

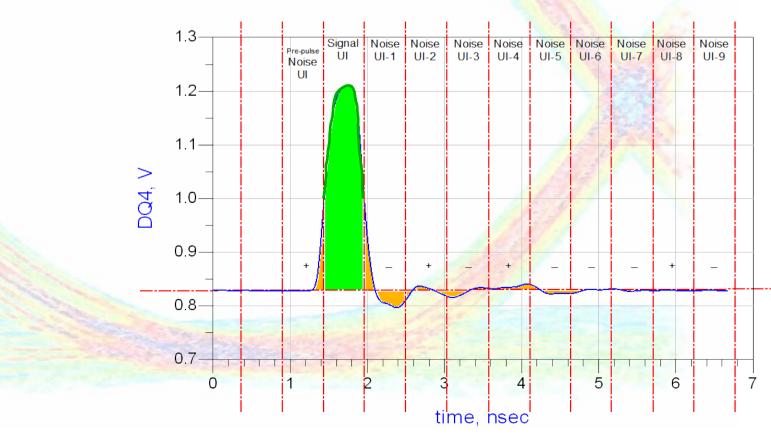
Alternative solution:

- Completely slice all Traces into UIs
- Subtract all the ISI-UI's from the "use Data" UI
- Subtract all the X-talk UI's from the "use Data" UI

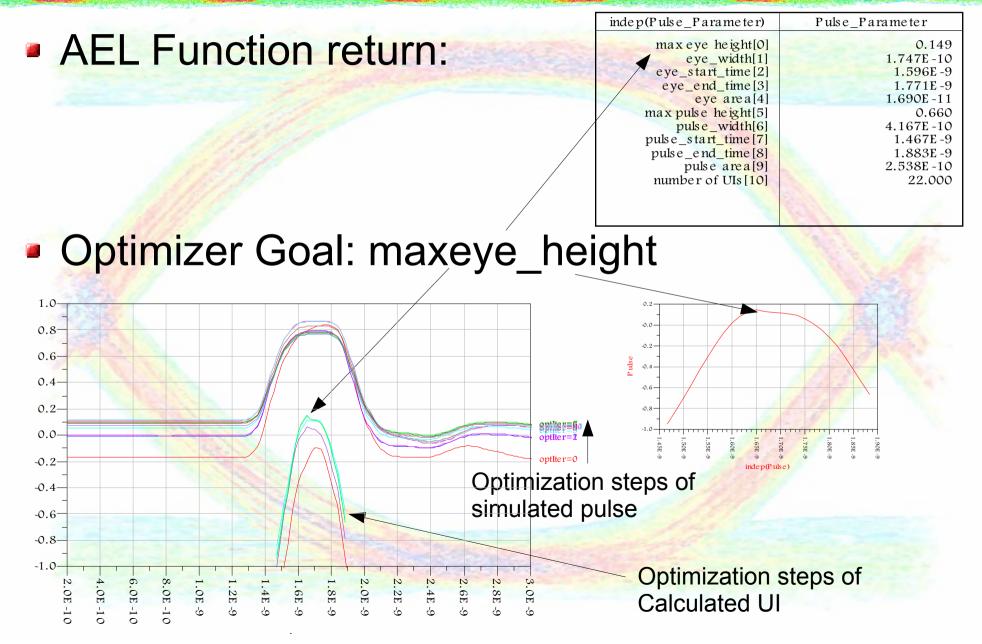

Advantages:

- Result is a pulse shape which is close to real eye shape
- Optimizing can be done on Hight and/or Width and/or Area or
- X-talk can be taken into account with the correct phase relation
 - Should be considered in the simulation setup
- Disavantage:
 - More complex to implement directly in schematic, better to use AEL

Original AEL code was implemented by Suhas Jawale!


5) Optimize Pulse Shape UI Slicing

- Cut the transient Pulses into slices
 - Take "differential" pulse and use "0" X-ing to find begin and end.
 - Center start to end inside UI

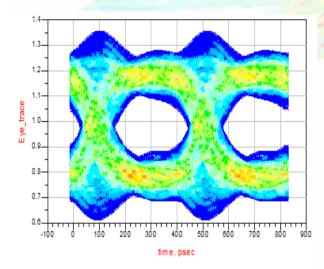

5) Optimize Pulse Shape Subtracting noise UI's from use data

- Start with the green "use data" UI shape
 - Subtract (abs) Traces from all ISI UI's
 - Subtract (abs) Traces from all X-Talk Ul's

5) Optimize Pulse Shape Optimization goal and steps

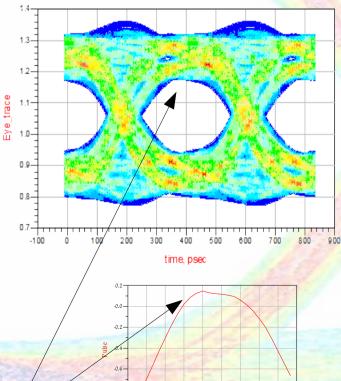
5) Optimize Pulse Shape Optimization Results

Optimization sim results for EyeHeight sims:


[optiter	TIM.R_DIMM2DIMM	OPTIM.Ron_Ctrl	OPTIM.RTT_SysEff	Goal DQ UI CAD
ł					
	0	20.00	20.00	20.00	161.9 m
	12	17.57	21.89	11.32	268.5 m
	2	17.67	22.06	11.13	268.7 m
	3	17.78	30.11	11.53	300.8 m
	4	15.80	33.92	11.57	314.6 m
	5	11.28	39.48	11.59	320.6 m
	6	11.09	38.05	11.46	327.3 m
	7	11.03	36.30	11.40	328.2 m
	8	4.513	35.46	11.24	344.8 m
	9	146.7 m	35.77	11.07	356.6 m
-	10	106.1 m	36.56	11.07	357.7 m
1	11	107.8 m	36.64	11.07	357.8 m
	12	107.8 m	36.64	11.07	357.8 m
1					
	100 A				

Values used for characterization simulation:

- RTT_SysEff: 11 Ohm
- Ron = 36 Ohm
- $R_T = 0 Ohm$


5) Optimize Pulse Shape Resulting Data Eye

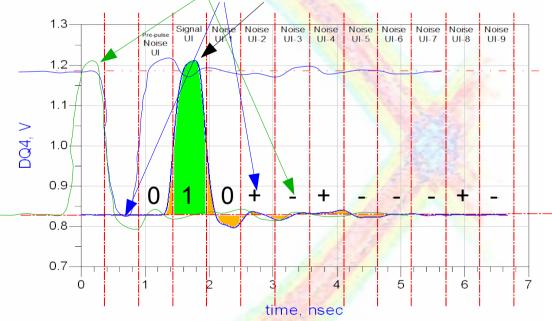
 Eye with parameters found by area optimization

Measurement Resul	ts
Eye Level Zero	0.77866992863014
Eye Level One	1.1816964383729
Eye Level Mean	0.98018318350153
Eye Amplitude	0.40302650974278
Eye Height	0.21600396411977
Eye Height (db)	-6.655382785734
Eye Width	2.9194383e-010
Eye Opening Fa	0.83984541245133
Eye Signal_to_N	6.243967252553
Eye Duty Cycle	2.33075e-012
Eye Duty Cycle	0.55937954325496
Eye Rise Time	1.2126543e-010
Eye Fall Time	1.2194645e-010
Eye Jitter (PP)	4.9334812e-010
Eye Jitter (RMS)	2.0050531e-010

Eye with parameters found by height optimization

indep(Pulse)

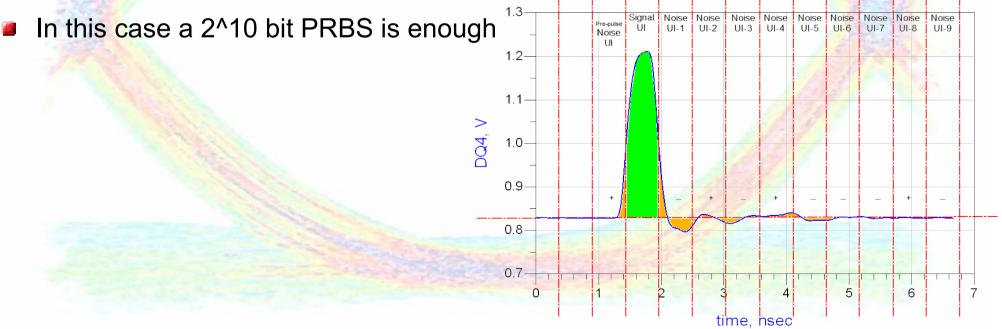
Good Matching of eye Shape


Measurement Resul	ts
Eye Level Zero	0.87643189221399
Eye Level One	1.2472481418715
Eye Level Mean	1.0618400170428
Eye Amplitude	0.37081624965755
Eye Height	0.22696551822416
Eye Height (db)	-6.4404011806007
Eye Width	3.1596452e-010
Eye Opening Fa	0.81736505496026
Eye Signal_to_N	5.4754034053144
Eye Duty Cycle	7.7344e-013
Eye Duty Cycle	0.18562663168974
Eye Rise Time	1.5108563e-010
Eye Fall Time	1.5104699e-010
Eye Jitter (PP)	1.1456024e-010
Eye Jitter (RMS)	2.511066e-011

5) Optimize Pulse Shape Comparison with Area optimization

- Improvement of the shape over the area optimization
 - 5% better Eye Height
 - 6% (25ps) better Eye Width
 - Less Overshoot
 - Higher Rise/Fall Time
 - Better Eye Quality at the end of the eye (hold time improves)
- The result fo the pulse height optimization was around 12% better than the manual optimization of each parameter separatly (with more parameters, not shown in this presentation)

6) Outlook: Additional options Calculate worst case pattern


- The "use" pulse needs to be a single pulse, so "010"
- Reverse ordering and polarity of + and as bitsequence.
- In this case the pattern would be "10111010 010".
- What to take as "+" or "-" ?
 - Area for this UI ?
 - Level at capture ?

6) Outlook: Additional options Length of Channel Memory

- After optimization the channel still needs to be characterized by Eye simulation and Timing Budget calculation.
- If a PRBS simulation is used (instead of fast channel sim) the simulation time can be limited by using the shortest necessary PRBS pattern
- Calculate what is the minimum PRBS for a characterization simulation:
 - Sum up the noise area for a 20bit pulse
 - Calculate after which bit you have 98% of the noise area

7) Summary

- Using pulse Repsonse as basis for optimization allows to use the ADS optimizer efficiently for SI optimization.
- Both methods shown here can be used
 - There are options to improve the Area based optimization e. g. by scaling the effect of X-talk
 - Instead of using the Area the level at the sampling point can be used. In this case the x-talk effect is taken into account including the phase information!

Things to consider:

- Even it is possible to optimize ISI and X-talk at the same time it can make sense to optimize the two effects separatly
- Setting two Goals (e. g. height and width) is possible, but it is difficult to adjuste the weighting!
- Normalization of the Signal might be a problem
- > Using different "OptimType" can lead to different results

EyeKnowHow Signal Integrity Consulting

Thank you for your attention

Services and Know How