
ADS for Signal Integrity optimization

Characterizing a channel: Where we are coming from!

In the beginning there was the transient simulation! Some time ago the best way to ensure a
functional system was to perform a time domain simulation with a text file controlled SPICE
simulator. The result was a time domain
waveform that was evaluated during a post
processing for Signal integrity quality. The
main thing to do was to calculate a dataeye
based on an “imaginary” perfect clock as
phase reference. Due to the rising signaling
speeds and the decreasing margins in the
timing the concept was improved and adjusted
to the signaling concept of the investigated
system. For communication systems that used
an embedded clock the PLL behavior was
taken into account and the Jitter simulated or
subtracted from the remaining timing margin
of the eye. For source synchronous signals the
clock was simulated in addition and was used
for setup/hold calculations or data eye
generation. In addition to the concept changes
the simulation accuracy had to be improved to
account for the decreased margins. This
resulted in a complex modeling that takes into account even small parasitics. In addition to this the

simulation needed to include the worst case
combination of all negative signaling
effects. To figure out the real margin of a
system the worst case ISI had to be
combined with worst case X-talk, The
simplest way to do so is to perform a
simulation with a PRBS pattern long
enough to account for the memory of the
channel and combine it with even and odd
X-talk. This is simple … but takes a LOT
of calculation time. And still this is a
process taking two steps: the simulation
and the post processing. Just the simulation
time could require to run the simulation
over night and do the post processing the
next day just for a single simulation. Due to
the huge amount of data the post
processing can not be done in realtime. The

post processing time is short compared to the simulation, but still requires minutes to get the results.

Fig 2: Data Eye with Phase reference and AC/DC tSH
measurement

Fig 1: Time Domain simulation with a 2^12 PRBS
pattern and even and odd X-talk

Characterizing a channel: Where we are today!

The simulation accuracy was always adjusted to the available calculation power. For optimization
of a channel several long running simulations have been needed. Therefore it was necessary to
reduce the accuracy and to optimize each effect separately. Even today it is a good thing to separate
ISI and X-talk. Only the final evaluation, to judge about pass or fail is a simulation that takes into
account all effects!
To keep calculation time short the methods have gotten a big improvement in the last time. The
channels are characterized by a step or (im)pulse response. This method is used e. g. by the free tool
“Stateye” [1]. So instead of doing a long time
domain simulation with a PRBS source only a
single rising and falling edge is simulated
(see Fig. 3). Out of these edges the channel
behavior and the worst case dataeye can be
calculated. Of course this can be done based
on a S-parameter characterization of the
channel too. But the use of the step response
does have one significant advantage: It's
straight forward to use a real driver and
receiver. It's possible to use SPICE or IBIS
models for the driver and Receiver. So the
information on the nonlinearity of this
devices is already included in the information
of the step responses. Most statistical eye
tools allow to use S-parameter as channel description too, but in this case the user has to use an
ideal linear (50Ohm) driver or build a behavioral model of the Driver and Receiver. This statistical
eye tools can calculate deterministic ISI and X-talk effects. So on a first look several simulations
needs to be done: One for the data signal (the victim), stimulating it with a rising (and falling) edge
and observing the output. One for each aggressor and observing the victims response. This can be
simplified by stimulating all aggressors at once and only observing the combined impact on the

victim. But even simpler is it with the boundary
condition, that a channel on a PCB is a passive
linear system. In this case the response on the
Victim from a stimulated aggressor is the same as
the other way round. Again this might not be
exactly true in real worlds systems (e. g. or when
doing a layout accurate simulation) as the
aggressors might have a slight different routing as
the victim, but in a first order the result is accurate
enough. Using this approach allows to evaluate a
system with multiple aggressors with a single
simulation!
This results in quite short simulation times, but
adds some burden to the post processing. But as

already the post processing for a long time domain simulation took some time, there is still the same
time needed now (some seconds to minutes). Another big advantage of this method is, that there can
be evaluated some other effects without doing a new simulation. The tools can add random jitter for
TX and RX circuits and calculate Bit Error Rates. Pre-Emphasis and equalization can be added, and
and even the optimized taps can be calculated. The pattern of the signals can be changed form a
PRBS to a Clock pattern. Doing an FFT (Fig. 4) on the signal shows the channel characteristics in
the Frequency domain, and so on and on ...

Fig 3: Simulation result for a rising and falling
step. Usually real systems does not have symmetric
edges so both are needed ...

Fig 4: The FFT gives a quite good impression
for the quality (SNR) of the Channel

Using this method required a third party tool before ADS2008. One could use the export from the
data display to write the step response to a simple ASCII file. The better way is to write it directly
out from the simulation by using the “write_var” command in a “MeasEqn” or even better from a
separate netlist. Using a netlist has the huge advantage, that the equations can be written a normal
text editor with all copy and past functions. Even not intended for this feature it is possible to
generate a fully automated process for data evaluation for a third party tool using “write_var”.
When doing a sweep it is possible to create subdirectories by the “mkdir” command for each sweep
step. All variables of the design can be written into a text file to document the simulation

conditions. And of course the simulation result is
exported. Additionally even a script can be generated
that runs the third party tool over all the sweep cases
to do the post processing and data evaluation!
Even this would not be necessary in ADS2008 due to
the implementation in the digital Ptolemy simulator
SI engineers might prefer the RF design environment
to perform this simulations. In ADS 2009 this feature
is now implemented in the “FastChannelSim”. As
some might have implemented already their own
statistical tool for data evaluation with additional
features they might still stay with the external
approach. But if you are starting now to use this

method the “FastChannelSim” should be the first thing to explore!

Optimizing a Channel: How to do it efficiently?

So overall there are a lot of ways to investigate the quality of an existing channel. But now the
difficult thing comes into the game: How to optimize the channel? The simple approach is to do
parameter sweeps over all interesting variables. This is quite some work, but straight forward on a
Point to Point connection. On each of the Parameters (e. g. Board Impedance Z0, Driver Impedance
Ron, Termination Impedance RTT) the dependency can be found, and the best case can be taken. In a
perfect system all impedances should match, so a configuration where Z0 = Ron = RTT is a reasonable
starting point. But in real world systems e. g. the routing impedance is not perfect, as it is changed
by packages and via's. It is not completely true that each parameter can be optimized on it's own, as
all parameter are interact with each other (e.g. Ron and RTT), but in a first order you will get an
optimized value for each swept variable. If than a simulation is performed with the set of variables
found in separate sweeps the result might not be the absolute optimum, but it is definitely a quite
good configuration!

But it is going to be complicated on a multi drop bus. One quite complex example is a source
synchronous, burst type, bidirectional,
single ended multidrop memory bus.
Independent if you are talking about
DDR2/DDR3 or the upcoming DDR4 one
of the most important requirements is to
connect as much memory as possible at
maximum speed to one channel. Such a
configuration creates a huge matrix of
dependent and independent variables that
needs to be varied to get the optimum
configuration. Due to the asymmetric nature of the channel the signal integrity characterization
needs to be done twice: separately for writes and reads where some of the variables are fixed for

Fig 5: DataEye generated with ADS
FastChannelSim feature

Fig 6: Example for a MultiDrop memory bus

DRAM data channel with 4Ranks (1P4P)

Controller

DRAM

both cases (Board topology and impedance), but some can be optimized independently (dynamic
ODT settings).
And worst of all, the outcome will be not a perfect eye, but the “best” solution will be achieved by a
trade off between timing and voltage margin. So the difficult question to answer is: Which is the
best solution ?

The simple approach to optimize each parameter separately is going to fail due to high interaction
between the variables. For example there are different termination schemes (which of the devices
on the bus is terminating with which value) that interacts highly with the topology on the bus, the
driver and board and DIMM impedance.
The brute force attempt so solve the problem by performing a multidimensional sweep and taking
the best parameter combination is a nice idea. But just due the huge amount of possible
combinations this is not a reasonable solution.

Optimizing a Channel: Let ADS do the job

“Luckily” (or was this intended?) there is a nice feature included in ADS: the Optimizer! But how
to utilize it in such a complex system? The first difficulty is, that the optimizer needs some feedback
out of the simulation. Here is one feature of ADS that many people forget about: Each equation
used in the data display also works in the schematic. So once it is proven, that the eye calculation is
working in the data display, this equation can be used on schematic level too. And now the result
can be used as input of the optimizer. Unfortunately it is not that easy to debug such a setup and
even worse: A long running simulation is needed to create a dataeye. The previous described
method of using the step response for eye calculation can not be used, as this requires an external
tool. Even the FastChannelSim in ADS2009 will not be able to handle the problem as it's result can
not be used for optimization (at least not in it's first implementation).

But the solution is only some Equations or lines of AEL code away. Instead of using a step response
it turns out to be usefull to use a UI (Unit Interval) wide pulse as basis for the optimization. First it's
a good idea to normalize the pulse in the voltage scaling to have a solid basis for different input
signals. Otherwise different combinations of
Ron, RTT and VTT (Termination voltage)
might shift the signal and the equation is
possibly failing.

Now let's separate ISI optimization from X-
talk again. The first task is now to slice the
pulse waveform into UI fine pieces. Cutting
in parts is easy, but where to make the cuts?
As usual the answer is: That depends … in
this case from the real configuration. A
quite good approach is to take the
maximum of the pulse and center the UI
around. If you do have a clock or strobe
signal you might want to use this as a phase
information for centering the UI. The
outcome is now one slice with the
information on the transmitted pulse (green
area) and a lot of slices with the information on pre- and post pulse disturbances (yellow area),
called ISI. Subtracting now each of the ISI UI's from the transmitted pulse UI reduces the pulse like

Fig 7: Pulse response simulation result as input for
the ADS optimizer

Signal
UIPre-pulse

Noise
UI

Noise
UI-1

Noise
UI-2

Noise
UI-3

Noise
UI-4

Noise
UI-5

Noise
UI-6

Noise
UI-7

Noise
UI-8

Noise
UI-9

++_+_+ _ _

Signal
UIPre-pulse

Noise
UI

Noise
UI-1

Noise
UI-2

Noise
UI-3

Noise
UI-4

Noise
UI-5

Noise
UI-6

Noise
UI-7

Noise
UI-8

Noise
UI-9

++_+_+ _ _

the ISI does! As you see in this example the signal is nearly settled in the 9th UI after the pulse. So
to simulate 10 bits should be enough for this investigation. Trying to catch the worst case pattern
with a conventional time domain simulation would require a PRBS simulation with 2^10 bit PRBS
pattern!
Now let's think about the evaluation of the data we just created. Having done the subtraction of the
noise UI's from the signal UI we can check the eye height or eye width of the remaining pulse and
use the outcome as goal for the optimizer. As mentioned before the best eye might be a trade off
between voltage and timing margin. So there can be set two optimization goals: one for eye width
and one for eye height. But it turns out to be quite difficult to find the correct weighting to get the
optimum result for both. A possible solution for this problem is instead of using voltage and time,
the energy of the pulse by measuring the area underneath the pulse. Overall this results in less then
10 MeasEqn in the Schematic. Using AEL code of course is the more elegant and flexible solution!

Now as we do have the ISI lets take a look on the X-talk. As described before we assume that we do
have a passive linear system. So again we can
run only a single simulation stimulating the
victim with a UI wide pulse and measure the
responses on the aggressors. On the right you
see the top of the “victim” pulse as black
dashed line, and the responses on the
aggressors in different colors. Now the same
approach as before can be used by calculating
the noise of all Ui's (this time including the
UI of the original pulse). This gives the
necessary information for the impact from the
X-talk. As you can see in this case the x-talk
peaks are injected exactly at the crossings of
the signal. If this does not fit to your real
system (e. g. because you do have a center
aligned Strobe), you can just shift the UI borders for slicing the aggressors as needed. Adding this
feature results in about 10 additional MeasEqn in the schematic, where the number of equations
increases with the number of the aggressors to be considered. If the solution is implemented as AEL
a loop can be used to create a quite small but very flexible and fast AEL function.

Additional features:

The nice thing in this simulation is, that you can get quite some more information out of this
simulation. Finding the worst caste pattern for a 1 is quite simple. Checking from backwards for
each UI whether the level (at the strobe point) is above or below the reference level results in the
worst case pattern for the given channel. In the case shown above this is a “01000101010” starting
from UI-9 where the blue “1” is the worst case pulse. As the resolution of the picture does not allow
to read out the patter exactly this is indicated by the “+” and “-” signs in the Noise-UI slices. But for
the AEL code it is no problem to read out the pattern. For the worst case “0” the pattern just needs
to be inverted (... if rising and falling edges of the pulse are symmetric).
One can also calculate the required pattern length for a given accuracy. Assuming you would like to
get a pattern length that catches at least e. g. 97% of the ISI noise you need to do one pulse
simulation that is for sure long enough. So in this case a pattern of 25 bit would be on the safe side.

Fig 8: Single 1 pulse and X-talk on 8 aggressors

Now there are several ways to do the calculation. Each of the implementations below is a bit
correct.
One solution is to measure the area under the trace for all slices, and then sum up the positive area
of all noise UI's.. Once you crossed the 0.97 from the overall area you know how much bits to
simulate. It might be better first to use the abs() function to ensure that each part of the area inside a
noise slice is accounted for. So a pulse with the same amount of positive and negative area (like
Noise UI- 2 in the example) is not “ignored”. Or you just sum up the abs() of the levels at the
sampling point. Non of the 3 solutions above will give an absolute correct result, but all do not
create much of programming efforts and give enough accuracy for the goal we want to accomplish.

Conclusion:
With only 10 to 20 lines of AEL code it is possible to replace a multidimensional sweep of a long
running PRBS time domain simulation (including manual data evaluation) by a short channel pulse
characterization. As shown there are quite some different options to implement calculations. Non of
them might be perfectly correct, but this is not necessary at all. We are just looking for the best case
configuration and reasonable input for the optimizer. Checking the quality of the resulting
parameter set is still a task of conventional simulation and Timing budget calculation. In a practical
example this method gave an improvement of 12% eye height over the solution found with sweeps
for independent single parameter optimization in much shorter time!.

So using all features of ADS can really speed up your work and improve your results!

[1] www.stateye.org

http://www.stateye.org/

	ADS for Signal Integrity optimization
	Characterizing a channel: Where we are coming from!
	Characterizing a channel: Where we are today!
	Optimizing a Channel: How to do it efficiently?
	Optimizing a Channel: Let ADS do the job
	Additional features:
	Conclusion:

