Jitter in PCIe application on embedded boards with PLL Zero delay Clock buffer

Hermann Ruckerbauer
EKH - EyeKnowHow
94469 Deggendorf, Germany
Hermann.Ruckerbauer@EyeKnowHow.de
Agenda

1) PCI-Express Clocking

2) Motivation and Background
 2a) Basics
 2b) Clocking in different PCIe generations
 2c) Different PCIe clocking architectures

3) Clock Compliance Test

4) Conclusion
PCIe Clocking

- PCIe are working at speeds up to 8Gb/s the RefClk only works at 100MHz!
- While the data signals are treated as „high speed“, the clock is often treated as low speed signal
- But the PCIe specification relies on a well defined Jitter behavior, so it is very important to verify the RefClk behavior very carefully

PCIe RefClk needs also be measured as part of the compliance measurements in a PCIe system! Jitter as well as Signal Integrity and AC parameter definition needs to be verified in these tests!
Agenda

1) PCI-Express Clocking

2) Motivation and Background
 2a) Basics
 2b) Clocking in different PCIe generations
 2c) Different PCIe clocking architectures

3) Clock Compliance Test

4) Conclusion
Important Basics

Jitter amplitude

Jitter Explanation out of Agilent Jitter seminar 2006

Jitter Analysis Techniques for High Data Rates (Application Note 1432)

Figure 1. Comparison of an ideal clock and a sinusoidally jittered clock. The jitter amplitude is $\frac{3}{2}$ UI.
Important Basics
PLL Jitter Transfer Function

PLL should follow Low Frequency Jitter (e.g. SSC or Wander) and cancel High Frequency Jitter

Jitter Transfer function of a PLL
- Ideal behavior (blue line)
 - As long PLL follows low frequency Jitter in the eye this is not seen in the Eye Diagram
- Possible real behavior (red Dots)
 - If the PLL/CDR can not follow this Jitter it will show up in the Eye Diagram
- Things like “Jitter Peaking” are not considered in this picture

Effect of CDR (and Jitter Transfer function) on Jitter
Important Basics

Order of a PLL

1st or 2nd Order of a PLL* ?

About the order of PLL – The order of a PLL is specified by its transfer function. If there is no filter, the PLL is called a first order PLL. The highest power of s in the denominator is used as an indicator of the loop order. The transfer function below is for a 2nd order loop.

The loop transfer equation can be written in this fashion,

\[
H(s) = \frac{\omega_n^2 + 2s\xi\omega_n}{s^2 + 2s\xi\omega_n + \omega_n^2}
\]

18

where

\[
\omega_n = \sqrt{\frac{K}{\tau_1}} \quad \xi = \frac{\omega_n\tau_2}{2}
\]

Source: http://complextoreal.com/tutorials/ Tutorial 18 and 19
Important Basics
Order of a PLL for measurements

The additional filter in a 2nd order PLL would clean up the jitter in this signal.

- If a system uses such a PLL for CDR it would not see this jitter.
- PCIe devices should use at least 2nd order PLLs.

1st order PLL

2nd order PLL
Agenda

1) PCI-Express Clocking

2) Motivation and Background
 2a) Basics
 2b) Clocking in different PCIe generations
 2c) Different PCIe clocking architectures

3) Clock Compliance Test

4) Conclusion
Clock Specification over PCIe Generations

First major impact on clock performance was the change from PCIe 1.0a to 1.1:

“The PCI Express 1.0a specification failed to specify the input bandwidth the reference clock receiver or phase jitter of the reference clock itself. This is important because jitter that lies within the loop bandwidth the receiver PLL for the reference clock will transfer onto the high speed data lines. This hole in the PCI Express specification was corrected in the 1.1 update” *

In Gen1 the RefClk spec was part of the CEM spec, in Gen2 it moved to the base spec

- Other parameters are added

- Gen3 added again some parameters that are required to be measured for compliance testing

*Source: Agilent application note 5989-1240EN
Clock Specification over PCIe Generations

Gen2 Compliance testing changed to „Dual Port Testing“.
This test method convolves Signal and clock traces and calculate Signal quality for data traces.

“Dual Port” Signal compliance testing does not mean separate clock tests are obsolete!

Lower speed RefClk specs are no subsets from Gen3 specification. Each generation covers its own frequency requirement.

RefClk Tests are required for each generation separately!
1) PCI-Express Clocking

2) Motivation and Background
 2a) Basics
 2b) Clocking in different PCIe generations
 2c) Different PCIe clocking architectures

3) Clock Compliance Test

4) Conclusion
Clocking Architectures

Three different clocking architectures are defined:

- Common clocked architecture
- Data clocked architecture
- Separate clocked architecture

This would require much tighter clock spec and no SSC in the system. This configuration is not covered in this presentation.

Even called „clocking architectures“ these are receiver (RX) implementation architectures.

Usually a system designer does not know about the RX clocking architecture of the used devices (e.g. for AddIn Cards). So from a system perspective it is required to support both, common clocked and data clocked architecture!
Example: Common RefClk architecture

Which Transfer is shown?
- Host to AddIn Card?
- Which components are where?
- How to calculate the transport delay T2 –T1?

How does this map to embedded Applications?
Common clocked RX architecture
Transfer from ComExpress

Assuming „Zero Delay“ for the clock buffer there is only small delta between RefClk and TX Transport Delay

"Jitter Domain" on RX is the same for Clk and Data! Small delta for transport delay due to system configuration
Data clocked RX architecture
Transfer from ComExpress

No Transport Delay requirement!
Data clocked RX architecture
Transfer from AddIn Card

No Transport delay requirement

ComExpress Board

PLL not used for RX Data capture

PCIe AddIn Card
Common clocked RX architecture
Transfer from AddIn Card

Transport delay Delta requirement < 12ns
Transport delay calculation for embedded systems

Parameters to be considered:

- Signal flight times on PCB
 - CPU Module
 - Carrier Board
 - AddIn Card
- Delays introduced from connectors
- RX/TX device delays
- „Zero Delay“ Buffer
Signal flight time on PCB is around 175ps/inch

4inch routing on AddIn Card for clock and data calculates to:

\[2 \text{signals} \times 4\text{inch} \times 175\text{ps} = 1.4\text{ns}\]

Considering a connector delay with 150ps and knowing that each signal crosses two connectors calculates to 0.6ns

Zero Delay clock buffer need to be considered with several parameters e.g. clock output skew.

Reference [4] calculates these to another 2ns

TX internal delays need also be considered with 2ns

These delays take 6ns from the specified 12ns maximum transport delay
Remaining 6ns need to be distributed to clock and data lines, so 3ns for each signal

With 175ps/inch this allows 17Inch routing on carrier board and CPU Module

5Inch module routing leaves 12 inch routing on carrier board

The special implementation with Connectors and Zero Delay clock Buffer limits the solution space for PCIe clock distribution to around 12 Inch clock routing!
1) PCI-Express Clocking

2) Motivation and Background
 2a) Basics
 2b) Clocking in different PCIe generations
 2c) Different PCIe clocking architectures

3) Clock Compliance Test

4) Conclusion
Clock Compliance: Test Setup

Specified clock compliance test Setup

- No Termination and
- 2pF load to GND

RefClk Generator

12inch 100Ohm Differential PCB Trace

Test Point

DUT

2pF load

2pF load

RefClk Test Setup
Clock Compliance: Test Setup

- The CLB (Compliance Load Board) is not optimized for clock compliance tests
 - Normal test configuration connect 50Ohm SMA cables to Scope input with 50 Ohm termination
 - This does not fit to the specified test load configuration: No Termination and 2pF load to GND

![Diagram of test setup with CLB and connections]
Difficult to create a common setup for all measurements.

- Standard configuration in most cases will be SMP/SMA cables to 50Ohm scope input
 - Due to 50 Ohm termination this setup does not allow crossing point and rise/fall time tests
 - Jitter tests will have only small difference to open circuit test
- Using a differential active probe provides the open circuit, but can not measure the clock crossing point.
- Best would be to use two single ended active probes.
 - But there is no GND Pin at the probe connector of the CLB!
Clock Compliance test require:

- AC Parametric test
- Jitter test

Available tools

- PCISig ClockJitter tool: Only Jitter evaluation
- Scope vendors compliance application

Clock Jitter tool (Gen2 Test)

Agilent PCIe Gen2 RefClock compliance Test result example

Agilent PCIe Gen1 RefClock compliance Test result example
Data lane compliance testing utilizes „Dual Port“ methodology

- Clock and Data are captured with a single acquisition and Sigtest convolves the data to generate a Dataeye.

- **Dual Port Compliance test Methodology does not fit to Data Clocked architecture**

- Data lane compliance does show problems on Clock and Data, but does not allow to distinguish the source of the problem.

With the “Dual Port” test setup in PCIe Gen2 compliance tests it is difficult to analyze the root cause of compliance issues!
Compliance Test
Pass/Fail Clock Compliance

Signal Compliance from a System with FAIL Clock Compliance

Signal Compliance from a System with PASS Clock Compliance
Failing Clock Compliance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Description</th>
<th>RMS Jitter (ps)</th>
<th>% Value</th>
<th>PASS/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>Reference Clock, High frequency > 1.5MHz RMS Jitter (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>5.19</td>
<td>-67.4 %</td>
<td>VALUE <= 3.10 ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, SSC Residual (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>39.21</td>
<td>47.7 %</td>
<td>VALUE <= 75.00 ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Low frequency 10kHz - 1.5MHz RMS Jitter (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>340 fs</td>
<td>86.7 %</td>
<td>VALUE <= 3.00 ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, SSC Deviation (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>471.1 m%</td>
<td>5.8 %</td>
<td>VALUE <= 500.0 m%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Maximum SSC Slew Rate (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>7.1 fs/UI</td>
<td>99.1 %</td>
<td>VALUE <= 750.0 fs/UI</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>Reference Clock, High frequency > 1.5MHz RMS Jitter (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>6.52</td>
<td>63.0 %</td>
<td>VALUE <= 4.00 ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Low frequency 10kHz - 1.5MHz RMS Jitter (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>530 fs</td>
<td>92.9 %</td>
<td>VALUE <= 7.50 ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Full SSC Modulation (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>6.0 fs</td>
<td>100.0 %</td>
<td>VALUE <= 20.0000 ns</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, SSC Deviation (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>469.3 m%</td>
<td>0.1 %</td>
<td>VALUE <= 600.0 m%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Maximum SSC Slew Rate (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>7.2 fs/UI</td>
<td>99.0 %</td>
<td>VALUE <= 750.0 fs/UI</td>
</tr>
</tbody>
</table>

Passing Clock Compliance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Description</th>
<th>RMS Jitter (ps)</th>
<th>% Value</th>
<th>PASS/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, High frequency > 1.5MHz RMS Jitter (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>2.37ps</td>
<td>23.5 %</td>
<td>VALUE <= 3.10ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, SSC Residual (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>21.58ps</td>
<td>71.2 %</td>
<td>VALUE <= 75.00ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Low frequency 10kHz - 1.5MHz RMS Jitter (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>590 fs</td>
<td>80.3 %</td>
<td>VALUE <= 3.00ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, SSC Deviation (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>405.4 m%</td>
<td>0.9 %</td>
<td>VALUE <= 500.0 m%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Maximum SSC Slew Rate (Common Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>3.8 fs/UI</td>
<td>99.5 %</td>
<td>VALUE <= 750.0 fs/UI</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, High frequency > 1.5MHz RMS Jitter (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>2.88ps</td>
<td>28.0 %</td>
<td>VALUE <= 4.00ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Low frequency 10kHz - 1.5MHz RMS Jitter (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>000 fs</td>
<td>91.2 %</td>
<td>VALUE <= 7.50ps</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Full SSC Modulation (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>5.7 ps</td>
<td>100.0 %</td>
<td>VALUE <= 20.0000ns</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, SSC Deviation (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>464.3 m%</td>
<td>7.1 %</td>
<td>VALUE <= 500.0 m%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Reference Clock, Maximum SSC Slew Rate (Data Clk) (PCIE 2.0, 5.0 GT/s)</td>
<td>4.0 fs/UI</td>
<td>99.5 %</td>
<td>VALUE <= 750.0 fs/UI</td>
</tr>
</tbody>
</table>

5ps vs. 2ps RMS jitter
The clock compliance test algorithms requires quite some post processing of the Data

Two clocking architectures

<table>
<thead>
<tr>
<th>Clock Filter Functions</th>
<th>RefClk RX Architecture</th>
<th>Common Clocked</th>
<th>Data Clocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitter >1.5MHz</td>
<td>SSC Separation</td>
<td></td>
<td>No SSC Separation</td>
</tr>
<tr>
<td></td>
<td>PLL difference function</td>
<td>0.01-1.5MHz step BPF</td>
<td>Max. PLL BW function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01-1.5MHz step BPF</td>
</tr>
<tr>
<td>Jitter < 1.5MHz</td>
<td>PLL difference function</td>
<td></td>
<td>Max. PLL BW function</td>
</tr>
<tr>
<td></td>
<td>1.5MHz step HPF</td>
<td></td>
<td>1.5MHz step HPF</td>
</tr>
<tr>
<td></td>
<td>Edge filtering</td>
<td></td>
<td>Edge filtering</td>
</tr>
</tbody>
</table>

For failure analysis these functions need to be „re-build“ outside of the scopes compliance application

- SSC removal
- Transfer to freq-Domain
- BP and HP Filters
- PLL Transfer function manipulation
- Edge filter to clean up scope sampling residual
CLK Compliance Test
Pass/Fail Clock Compliance

PASS CLK TIE

Fail CLK TIE

PCIE 2.0 Common Clk TIE spectra, Mag
CLK Compliance Test
Pass/Fail Clock Compliance

Combined Jitter

LF Jitter < 1.5MHz
HF Jitter > 1.5MHz

How to create this data:
- SSC removal
- Transfer to Frequency domain
- BP and HP Filters
- PLL Transfer function manipulation

BP Filter from 0.1 to 1.5MHz
HP Filter from 1.5MHz to 50MHz
CLK Compliance Test
Pass/Fail Clock Compliance

RX/TX PLL transfer functions for RMS jitter calculation for common clock RX Architecture

Reference Clock, High frequency > 1.5MHz RMS Jitter (Common Clk) (PCIE 2.0, 5.0 GT/s)

Pass Limits: <= 3.10 ps
Reference Clock RMS Jitter (TREFCLK-HF-RMS) 13.70 ps

These are spec defined PLL transfer functions to calculate RMS jitter (not measured curves)
CLK Compliance Test
Failure analysis

Based on the information from the clock compliance test the conclusion is that the bad signal quality on the data is caused by a clock jitter problem.

To do more detailed analysis the compliance tests need to be “re-build” in the normal scope environment.

As some post-processing features (e.g. PLL difference function) is a special feature of the compliance application this might be difficult.

Functions that should be available on most scopes directly:
- Clock recovery by second order PLL
- SSC removal (better to switch off SSC for analysis)
- FFT for transfer of TimeDomain signal to Frequency Domain
- BandPass and HighPass Filters
- TIE measurement for Clock jitter
CLK Compliance Test
Failure analysis

TIE shows ~3MHz Jitter on Clock with standard Scope tool functionality

10 Cycles measured
CLK Compliance Test
Failure analysis

- Jitter is too fast for „Number 1“ Jitter source: DCDC switching Power Noise
- 3MHz noise might already come out from the host clock generator and it might be not be possible to improve on board level
- Possible solution (?): Turn drawback from embedded systems into advantage
 - Zero Delay clock buffers can clean up input clock by PLL Bandwidth setting optimization

Always configure the Zero Delay clock buffer according to your needs!
Measure input clock compliance as well!
Agenda

1) PCI-Express Clocking

2) Motivation and Background
 2a) Basics
 2b) Clocking in different PCIe generations
 2c) Different PCIe clocking architectures

3) Clock Compliance Test

4) Conclusion
Conclusion

Clock and Data Compliance Test on embedded Systems with PCIe interface is required and really important!
- Don’t forget TX AND RX for Data as well!
- 100MHz is NOT low speed
 - On clocks Jitter is important!
 - Edge rates are important for signal quality
- The standard test setup with the CLB does not allow to do all measurements with a single setup
 - Single ended open circuit measurements for e. g. crossing point tests are difficult to implement
- Especially for embedded applications the transport delay delta for common clocked architectures need to be considered
Conclusion

The convolution of Data and Clock signals in the “Dual Port Test setup” for Gen 2 TX compliance tests makes it difficult to distinguish between clock and data lane related issues.

Most systems will require compliance to both, common and data clocked RX architecture.

Cascading PLLs can cause issues due to jitter amplification, but might be also used to fix clock jitter issues.

For analysis of Clock jitter issues it is required to understand the post processing of the scopes compliance application.
References

